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LElTER TO THE EDITOR 

Surface critical behaviour and local operators with 
boundary-induced critical profiles 

Theodore W Burkhardtt and John L CardyS 
t Department of Physics, Temple University, Philadelphia, PA 19122, USA 
$ Department of Physics, University of California, Santa Barbara, CA 93106, USA 

Received 4 November 1986 

Abstract, We present a simple argument showing that the surface energy density of a 
semi-infinite d-dimensional spin system has, in general, a leading thermal singularity of 
the same form, IT- TCl2-”, as the bulk free energy. At bulk criticality energy-energy 
correlations decay as parallel to the surface. These results hold for both free and 
fixed boundary spins, i.e. the ‘ordinary’ and ‘extraordinary’ transitions. The extraordinary 
critical behaviour of the magnetisation is the same as that of the energy density. We also 
confirm and generalise these results in two dimensions with an independent approach 
based on conformal invariance. 

In this letter we consider the surface critical behaviour of semi-infinite spin systems 
in d spatial dimensions, with either free or fixed boundary spins, on approaching the 
bulk critical temperature. In the terminology of surface critical behaviour these two 
boundary conditions correspond to the ‘ordinary’ and ‘extraordinary’ transitions, 
respectively (Binder 1983). 

Evidence from a number of model calculations (McCoy and Wu (1973) and Cardy 
(1984b, 1986b) for the two-dimensional Ising model, Dietrich and Diehl (1981), Diehl 
et a1 (1983) and Ohno and Okabe (1984) for the d-dimensional n-vector model, and 
Cardy (1984b, 1986b) and Burkhardt (1985) for the two-dimensional q-state Potts 
model) seems to indicate that the ordinary and extraordinary surface critical behaviour 
of the energy density and the extraordinary surface critical behaviour of the magnetisa- 
tion is of the same simple type. These local densities have surface thermal singularities 
of the same form, 1 T - Tc12-a, as the bulk free energy and their two-point correlations 
decay as r-2d parallel to the surface. This particular critical behaviour is characterised 
by the surface scaling? dimension x“ )=  d. 

The first model-independent prediction of this type of surface critical behaviour 
was made by Bray and Moore (1977), who analysed the extraordinary critical behaviour 
of the magnetisation on the basis of a local free-energy hypothesis. With an entirely 
different approach, we confirm here the predictions of Bray and Moore for the surface 
magnetisation at the extraordinary transition and extend them to the energy density 
at both the ordinary and extraordinary transitions. 

t A local operator @ ( r )  with scaling dimension x rescales according to @ ( r ‘ )  = b ‘ @ ( r ) ,  r ’ =  b - l r  in thermal 
averages. This relation, the corresponding temperature transformation T’ = Tc+ b””(  T -  T,) and the hyper- 
scaling relation 2 - o = dv imply 

( @ ( r j ) 7 - l T -  T J ” ” = ~ T -  Tc112-u’r’d 

( @ ( r l ) @ ( r 2 ) ) 7 c -  tr, -r21-2‘. 
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Our letter consists of two parts. We first derive the leading thermal singularity 
\ T -  Tc\’ in the surface energy and magnetisation densities in general dimension d 
with a simple argument that considers the change in free energy of the system as it is 
extended by adding an extra layer of spins at the surface. We then confirm and 
generalise these results in d = 2 dimensions with a different approach based on confor- 
mal invariance (Cardy 1986~) .  Conformal invariance implies that the surface scaling 
dimension xg) of any local operator i,b( r )  with a non-vanishing boundary-induced 
critical profile ((+( r ) )T ,  # 0) is given, in general, by x y )  = 2 in two dimensions, indepen- 
dent of the bulk scaling dimension of the particular operator. 

Consider a spin system with Ld interacting spins and with free boundary conditions, 
shown schematically in figure 1. The number of interacting spins may be increased to 
( L +  A L ) d  by adding a layer of spins at the surface. The partition functions Z and 
free energies F = In Z of the original and augmented systems are related by 

Z L + A L  = Z L ( ~ X P  A W L  (1) 

FL+AL - FL = In(exp A H ) L  ( 2 )  
where A H  is, apart from an unimportant proportionality constant, the energy of the 
extra bonds added at the surface. Substituting 

(3) 
where fb and f, denote the intensive bulk and surface free energies, into equation ( 2 )  
gives 

(4) 
In a spin system defined on a spatial continuum, one can consider an extra layer 

( 5 )  

Since the first term on the right is proportional to the surface energy density E ’ ,  equation 
( 5 )  implies 

FL = Ldfb + Ld- ’ f ,  

fb = ( d L d - ’ A L ) - ’  h(eXp A H ) L  +0( L I ) .  

of infinitesimal thickness. In the corresponding limit AL+ 0, equation (4) becomes 

f b =  1L-0 lim ( d L d - ’ A L ) - ’ ( A H ) l  +O(L-’ ) .  

E I  -fb- I T - Tc\2-rr ordinary transition (6) 
in the thermodynamic limit. Thus the surface energy density at a free surface has a 
leading thermal singularity of the same form as the IT - Tc/2-n singularity of the bulk 
free energy. 
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Figure 1. Systems with Ld and ( L + A L ) “  interacting spins. 
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In a spin system defined on a lattice?, one cannot take the limit A L +  0 in equation 
(4), since A L  is restricted to integer values. However, in the limit L + a with AL. a 
non-zero integer, one again expects the same thermal singularites in 
( L d - ’ A L ) - l  In (exp A H ) L  and ( L d - ’ A L ) - ’  ( A H J L .  Thus for the case of free boundary 
conditions (ordinary transition) result (6) should hold quite generally. 

We now turn to the extraordinary transition (Bray and Moore 1977, Binder 1983), 
in which the bulk orders in the presence of a surface magnetisation due to sufficiently 
enhanced surface couplings or a surface field. If the boundary dimension is too low 
to support a spontaneous surface magnetisation above the bulk critical temperature, 
the surface field is essential for extraordinary critical behaviour. 

In the case of a semi-infinite system with no enhancement of the surface couplings 
and with boundary spins oriented by a surface field h , ,  we consider the change in free 
energy that results when an extra layer of interacting spins is added to the system and 
when the magnetic field is shifted from the original boundary spins to the new boundary 
spins. Equations (4) and (5) again apply, but now AH contains both single-spin 
magnetic-field energies and two-spin bond energies. A variety of heuristic argumentsf 
suggests that both of these energies have the same leading thermal singularity in the 
extraordinary transition. Thus we conclude 

m ,  - E ,  - fb - 1 T - Tc12-n extraordinary transition. (7) 

Here m, denotes the component of the magnetisation that couples to the surface field 
and E ,  is the energy density associated with the surface pair interactions. 

We now rederive these results in two dimensions in a somewhat more general form, 
as a consequence of the conformal invariance (Cardy 1986c) of critical correlations. 
The surface critical indices of several two-dimensional models have been determined 
(Cardy 1984b, 1986b) with the conformal invariance approach. It is interesting to see 
how results (6) and (7),  which are expected to hold independent of the details of 
particular models, also follow from conformal invariance. 

Consider any local operator $( r )  that has a non-vanishing boundary-induced profile 
( $ ( r ) ) T ,  at the bulk critical temperature in a semi-infinite system with free or fixed-spin 
boundary conditions. The energy density E(r) is clearly such an operator, and a second 
example is the magnetisation component m( r )  singled out by the boundary coondition 
in a system with fixed boundary spins. 

In the half space, the profile ($(r))?lfspace is given by 

as follows from ordinary scaling (Fisher and de Gennes 1978). Here rl is the perpen- 
dicular distance from the surface to point r and x:) is the bulk scaling dimension of 

t For lattice spin systems in two dimensions, equation ( 6 )  can also be derived by considering helical boundary 
conditions and adding one extra spin. 
$ One can separate the one and two-spin contributions by considering the spins inside the full line in figure 
1 to be coupled with short-range interactions but not subject to a magnetic field and the exterior spins to 
be coupled and also subject to a uniform field. Removing the field from the spins in a layer of thickness 
A L / 2  leads to equations similar to (4) and ( 5 )  with only single-spin terms in AH. 

Consider (Burkhardt 1985), for example, the semi-infinite classical n-vector model with spins S of unit 
length and an infinite surface field h ,  in the z direction. I t  is clear that ( S i )  = (Sk * S,,), where spin b is on 
the boundary and spin k is not. In a finite field h , ,  the two thermal averages are no longer equal, but the 
critical behaviour of each is presumably unchanged. In the extraordinary transition the spontaneous surface 
magnetisation or an applied surface field breaks the rotational symmetry and the distinction between local 
operators with the symmetry of the magnetisation density and the energy density disappears. 
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the operator + ( r ) .  In terms of conventional critical exponents, the bulk scaling 
dimensions of the energy and magnetisation densities are x(p) = d - v-' and x',"' = p /  v = 
( d  - 2 + 17)/2, respectively. 

In two dimensions the profile ($( z))fc transforms according to 

( 4  ( w )) :' = Id w ( z )/ dzl -G "( $ (z )) : (9) 

under a conformal mapping generated by the analytic function w = w( z). Here we use 
complex variables w = U + iu, z = x + iy to specify position. The superscripts G' and 
G refer to the boundary geometry, which is modified, in general, by the mapping. 
Making use of equations (8) and (9) and of the conformal mapping 

w = (L/ T )  cosh-' z (10) 

of the half space y > 0 onto the half strip U > 0, 0 < U < L, Burkhardt and Eisenriegler 
(1985) obtained the explicit expression 

( $ ( w ) ) ? ' ~ ' ~ ' ~ ~  = A([(L/7r)  s i n h ( ~ u / L ) ] - ~ + [ ( L / ~ )  s i n ( ~ u / L ) ] - ~ } " ~ " ' / ~  (11) 
for the profile in the half strip. 

Conformal invariance provides a great deal of information on the structure of the 
transfer matrices of two-dimensional systems (Cardy 1986a, b). In an infinitely long 
strip of width L, the pair correlation function formed with the operator $( w )  is given 
by 

(12) ( q,( 

Here the In) are eigenstates of the transfer matrix f = exp(-fi) of a slice of the strip 
with unit length and width L. The eigenstates satisfy gin)= E,ln) and 10) denotes the 
ground state of fi. The energy gaps E,, - Eo are related to surface scaling dimensions 
x t )  by 

(13) 

This follows from the mapping w = ( L/T) In z of the half space onto the infinite strip 
(Cardy 198:a). The smallest non-zero energy difference with non-vanishing matrix 
element (nl$( u)10) determines the surface scaling dimension x';" of the operator $( w). 

In terms of the same eigenstates In), the profile of $( w )  in the half-strip geometry 
is given by 

) +( w2 ))Tcfinite strip - -E  ( O I $ ( U , ) I ~ ) ( ~ I $ ( ~ ~ ) I O )  exp[-(En - E O ) I U I  - ~ 2 1 1 .  
n 

E,, - Eo = T X ~ ' /  L. 

The amplitude M,, specifies the compatibility of eigenstate In) with the boundary 
condition at the end U = 0 of the semi-infinite strip. 

(+( w)>2l f  
The right-hand side of equation (1 1) has the expansion 

= A[(L/  T )  s in (mv/~) ] -~+ '~ )  
m 



Letter to the Editor L237 

Comparing equations (14) and ( 1 9 ,  one learns that the only gaps that appear in (14) 
are integral multiples of 27r/L. These same energy gaps are also present in equation 
(12). Without explicit knowledge of the eigenstates In) and amplitudes M,,, one cannot 
rule out the possibility that other energy gaps, which are not integral multiples of 
27r/L, appear in (12) but are excluded from (14) by the boundary condition at the 
end of the strip. Whenever this exceptional situation does not arise in connection with 
the smallest non-zero gap in (12), the gap necessarily has the value AE = 2 ~ /  L, which 
through (13) implies the surface scaling dimension 

$) = 2 (17) 

for the local operator +. 
As discussed in the first footnote, in a two-dimensional semi-infinite system the 

surface scaling dimension x$) = 2 corresponds to a surface thermal singularity in (+( r))T 
of the same form I T - Tc(2-a as in the bulk free energy and to a pair correlation function 
( + ( ~ - ~ ) + ( r ~ ) ) ~ ,  that decays as Ir, - rJZd parallel to the surface at criticality. Conformal 
invariance predicts this type of critical behaviour, barring the exceptional situation 
referred to in the previous paragraph, for any local variable with a non-vanishing 
boundary-induced profile of the form (8). 

We conclude with a brief discussion of the ‘special’ or ‘multicritical’ transition 
(Binder 1983). This transition takes place at the bulk critical temperature in semi-infinite 
systems with critically-enhanced surface couplings too strong for ordinary surface 
critical behaviour but too weak for extraordinary behaviour. 

In the special transition the surface free energy has the scaling form (Binder 1983) 

A(?, t l )  = t2-a’-”G(t,t-’). (18) 

Here t and t ,  are relevant variables proportional to the deviations of the bulk and 
surface couplings, respectively, from the multicritical values. The function G is a 
universal scaling function and q5 is a positive crossover exponent. Equation (18) 
implies the thermal singularity 

(19) 

in the surface energy density at the special transition, which is stronger than the 
I T - Tc12-a singularity? derived above for the ordinary and extraordinary transitions. 

It is interesting to see whether or not the methods of this letter give information 
on the special transition. If the number of spins in a multicritical system is increased 
as in figure 1 by adding an extra layer of interacting spins at the surface, equations 
(4) and (5 )  still hold. Now, however, AH is not just the energy of the new critically- 
enhanced surface bonds. Adding AH to H also replaces the critically-enhanced 
couplings of the original surface spins with normal unenhanced couplings. Thus AH 
represents a difference of energies. Since the left-hand sides of equations (4) and (5) 
have the singular form I T - Tc12-a instead of the stronger singularity IT - Tc12-a-”-*, 
the leading thermal singularities from the opposing contributions in AH apparently 
cancel. No information on the crossover exponent (p is obtained. 

Some two-dimensional semi-infinite systems do exhibit special surface critical 
behaviour despite the low dimensionality of the boundary. For example, the Gaussian 
and classical n -+ 0 vector models, which correspond to ordinary and self-avoiding 

E, - afs/atl - 1 T - Tc12---’ special transition 

i At the ordinary and extraordinary transitions the corresponding crossover exponent has the value 9 = - Y. 
The negative sign reflects the irrelevance of changes in the surface coupling strength. 
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walks, respectively, have special transitions in two dimensions. For two-dimensional 
self-avoiding walks in the presence of a critically absorbing wall, the crossover crossover 
exponent 4 has been estimated by real-space renormalisation (Kremer 1983) and  by 
enumerations (Ishinabe 1983). Thus there is reason to ask whether conformal invari- 
ance yields any information on the special transition in two dimensions. 

It would appear that the arguments from conformal invariance given above should 
apply equally well to the special transition, giving a result contradicting (19). One 
possible resolution of this paradox is as follows. The amplitude A of the energy-density 
profile in equation (8) may vanish at the special transition. This is reasonable since 
one may see on physical grounds that, far from the multicritical point, A > 0 for the 
ordinary transition (i.e. the energy density is enhanced at the surface), while for the 
extraordinary transition A < 0. In that case, one should consider the correction to the 
behaviour given in (8), which will be proportional to r -2+l 'u-h ,  where A > 0. The result 
of expanding the energy-density profile in the half strip is now different, since the first 
factor on the right-hand side of (9) will involve only the bulk scaling dimension 
xLb) = 2 - v-I, while the second factor will depend on A. We then find that the energy 
decays as exp( - T A U /  L) in the half strip, with corrections which are down by integer 
powers of exp( -2m/L) ,  corresponding to the existence of an  energy gap TA/L in 
the spectrum of 6. This is consistent with the energy density having a surface scaling 
dimension 1 - c$/ v (and  hence with a surface energy-density singularity as in equation 
(19)) if A = 1 - 4/ v. However, this argument places no constraint on the value of 4. 

We thank H W Diehl and  E Eisenriegler for helpful discussions. TWB appreciates the 
hospitality of the KFA Julich, where part of this work was carried out, and acknowledges 
the support of a NATO Collaborative Grant. The work of JLC was supported by NSF 
Grant no PHY83-13324. 
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